Skip to main content

里面是错误的知识

三角函数

诱导公式

sin(α)=sinα\sin(-\alpha) = -\sin \alpha cos(α)=cosα\cos(-\alpha) = \cos \alpha sin(π2α)=cosα\sin(\frac{\pi}2 - \alpha) = \cos \alpha cos(π2α)=sinα\cos(\frac{\pi}2 - \alpha) = \sin \alpha sin(π2+α)=sinα\sin(\frac{\pi}2 + \alpha) = \sin \alpha cos(π2+α)=cosα\cos(\frac{\pi}2 + \alpha) = \cos \alpha sin(πα)=sinα\sin(\pi - \alpha) = \sin \alpha cos(πα)=cosα\cos(\pi - \alpha) = -\cos \alpha sin(π+α)=sinα\sin(\pi + \alpha) = -\sin \alpha cos(π+α)=cosα\cos(\pi + \alpha) = -\cos \alpha

平方关系

1+tan2α=sec2α1 + \tan^2 \alpha = \sec^2 \alpha 1+cot2α=csc2α1 + \cot^2 \alpha = \csc^2 \alpha sin2α+cos2α=1\sin^2 \alpha + \cos^2 \alpha = 1

两角和与差的三角函数

sin(α+β)=sinαcosβ+cosαsinβ\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta cos(α+β)=cosαcosβsinαsinβ\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta sin(αβ)=sinαcosβcosαsinβ\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta cos(αβ)=cosαcosβ+sinαsinβ\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta tan(α+β)=tanα+tanβ1tanαtanβ\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} tan(αβ)=tanαtanβ1+tanαtanβ\tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}

积化和差公式

cosαcosβ=12[cos(α+β)+cos(αβ)]\cos \alpha \cos \beta = \frac{1}{2}[\cos(\alpha + \beta) + \cos(\alpha - \beta)] cosαsinβ=12[sin(α+β)sin(αβ)]\cos \alpha \sin \beta = \frac{1}{2}[\sin(\alpha + \beta) - \sin(\alpha - \beta)] sinαcosβ=12[sin(α+β)+sin(αβ)]\sin \alpha \cos \beta = \frac{1}{2}[\sin(\alpha + \beta) + \sin(\alpha - \beta)] sinαsinβ=12[cos(α+β)cos(αβ)]\sin \alpha \sin \beta = -\frac{1}{2}[\cos(\alpha + \beta) - \cos(\alpha - \beta)]

和差化积公式

sinα+sinβ=2sin(α+β2)cos(αβ2)\sin \alpha + \sin \beta = 2 \sin \left( \frac{\alpha + \beta}{2} \right) \cos \left( \frac{\alpha - \beta}{2} \right) sinαsinβ=2cos(α+β2)sin(αβ2)\sin \alpha - \sin \beta = 2 \cos \left( \frac{\alpha + \beta}{2} \right) \sin \left( \frac{\alpha - \beta}{2} \right) cosα+cosβ=2cos(α+β2)cos(αβ2)\cos \alpha + \cos \beta = 2 \cos \left( \frac{\alpha + \beta}{2} \right) \cos \left( \frac{\alpha - \beta}{2} \right) cosαcosβ=2sin(α+β2)sin(αβ2)\cos \alpha - \cos \beta = -2 \sin \left( \frac{\alpha + \beta}{2} \right) \sin \left( \frac{\alpha - \beta}{2} \right)

倍角公式

sin2α=2sinαcosα\sin 2\alpha = 2 \sin \alpha \cos \alpha cos2α=cos2αsin2α=12sin2α=2cos2α1\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = 1 - 2 \sin^2 \alpha = 2 \cos^2 \alpha - 1 tan2α=2tanα1tan2α\tan 2\alpha = \frac{2 \tan \alpha}{1 - \tan^2 \alpha} cot2α=2cotαcot2α1\cot 2\alpha = \frac{2 \cot \alpha}{\cot^2 \alpha - 1}

半角公式

sin2α2=1cosα2\sin^2 \frac{\alpha}{2} = \frac{1 - \cos \alpha}{2} cos2α2=1+cosα2\cos^2 \frac{\alpha}{2} = \frac{1 + \cos \alpha}{2} sinα2=±1cosα2\sin \frac{\alpha}{2} = \pm \sqrt{\frac{1 - \cos \alpha}{2}} cosα2=±1+cosα2\cos \frac{\alpha}{2} = \pm \sqrt{\frac{1 + \cos \alpha}{2}} tanα2=sinα1+cosα=1cosαsinα\tan \frac{\alpha}{2} = \frac{\sin \alpha}{1 + \cos \alpha} = \frac{1 - \cos \alpha}{\sin \alpha} cotα2=sinα1+cosα=1+cosαsinα\cot \frac{\alpha}{2} = \frac{\sin \alpha}{1 + \cos \alpha} = \frac{1 + \cos \alpha}{\sin \alpha}

万能公式

sinα=2tanα21+tan2α2\sin \alpha = \frac{2 \tan \frac{\alpha}{2}}{1 + \tan^2 \frac{\alpha}{2}} cosα=1tan2α21+tan2α2\cos \alpha = \frac{1 - \tan^2 \frac{\alpha}{2}}{1 + \tan^2 \frac{\alpha}{2}}

反三角函数恒等式

arcsinx+arccosx=π2\arcsin x + \arccos x = \frac{\pi}{2} arctanx+arccotx=π2\arctan x + \text{arccot} x = \frac{\pi}{2} sin(arccosx)=1x2\sin(\arccos x) = \sqrt{1 - x^2} cos(arcsinx)=1x2\cos(\arcsin x) = \sqrt{1 - x^2} sin(arcsinx)=x\sin(\arcsin x) = x arcsin(sinx)=x\arcsin(\sin x) = x arccos(cosx)=x\arccos(\cos x) = x arccos(x)=πarccosx\arccos(-x) = \pi - \arccos x