Skip to main content

三角函数公式

诱导公式

sin(a)=sin(a)\sin(-a) = -\sin(a) cos(a)=cos(a) \cos(-a) = \cos(a) sin(π2a)=cos(a) \sin\left(\frac{\pi}{2} - a\right) = \cos(a) cos(π2a)=sin(a) \cos\left(\frac{\pi}{2} - a\right) = \sin(a) sin(π2+a)=cos(a) \sin\left(\frac{\pi}{2} + a\right) = \cos(a) cos(π2+a)=sin(a) \cos\left(\frac{\pi}{2} + a\right) = -\sin(a) sin(πa)=sin(a) \sin(\pi - a) = \sin(a) cos(πa)=cos(a) \cos(\pi - a) = -\cos(a) sin(π+a)=sin(a) \sin(\pi + a) = -\sin(a) cos(π+a)=cos(a) \cos(\pi + a) = -\cos(a) tan(a)=sin(a)cos(a) \tan(a) = \frac{\sin(a)}{\cos(a)}

两角和与差的三角函数

sin(a+b)=sin(a)cos(b)+cos(a)sin(b)\sin(a + b) = \sin(a)\cos(b) + \cos(a)\sin(b) cos(a+b)=cos(a)cos(b)sin(a)sin(b) \cos(a + b) = \cos(a)\cos(b) - \sin(a)\sin(b) sin(ab)=sin(a)cos(b)cos(a)sin(b) \sin(a - b) = \sin(a)\cos(b) - \cos(a)\sin(b) cos(ab)=cos(a)cos(b)+sin(a)sin(b) \cos(a - b) = \cos(a)\cos(b) + \sin(a)\sin(b) tan(a+b)=tan(a)+tan(b)1tan(a)tan(b) \tan(a + b) = \frac{\tan(a) + \tan(b)}{1 - \tan(a)\tan(b)} tan(ab)=tan(a)tan(b)1+tan(a)tan(b) \tan(a - b) = \frac{\tan(a) - \tan(b)}{1 + \tan(a)\tan(b)}

三角函数和差化积公式

sin(a)+sin(b)=2sin(a+b2)cos(ab2)\sin(a) + \sin(b) = 2\sin\left(\frac{a + b}{2}\right)\cos\left(\frac{a - b}{2}\right) sin(a)sin(b)=2cos(a+b2)sin(ab2) \sin(a) - \sin(b) = 2\cos\left(\frac{a + b}{2}\right)\sin\left(\frac{a - b}{2}\right) cos(a)+cos(b)=2cos(a+b2)cos(ab2) \cos(a) + \cos(b) = 2\cos\left(\frac{a + b}{2}\right)\cos\left(\frac{a - b}{2}\right) cos(a)cos(b)=2sin(a+b2)sin(ab2) \cos(a) - \cos(b) = -2\sin\left(\frac{a + b}{2}\right)\sin\left(\frac{a - b}{2}\right)

积化和差公式

sin(a)sin(b)=12[cos(a+b)cos(ab)]\sin(a)\sin(b) = -\frac{1}{2} \left[\cos(a + b) - \cos(a - b)\right] cos(a)cos(b)=12[cos(a+b)+cos(ab)] \cos(a)\cos(b) = \frac{1}{2} \left[\cos(a + b) + \cos(a - b)\right] sin(a)cos(b)=12[sin(a+b)+sin(ab)] \sin(a)\cos(b) = \frac{1}{2} \left[\sin(a + b) + \sin(a - b)\right]

二倍角公式

sin(2a)=2sin(a)cos(a)\sin(2a) = 2\sin(a)\cos(a) cos(2a)=cos2(a)sin2(a)=2cos2(a)1=12sin2(a) \cos(2a) = \cos^2(a) - \sin^2(a) = 2\cos^2(a) - 1 = 1 - 2\sin^2(a)

半角公式

sin2(a2)=1cos(a)2\sin^2\left(\frac{a}{2}\right) = \frac{1 - \cos(a)}{2} cos2(a2)=1+cos(a)2 \cos^2\left(\frac{a}{2}\right) = \frac{1 + \cos(a)}{2} tan(a2)=1cos(a)sin(a)=sin(a)1+cos(a) \tan\left(\frac{a}{2}\right) = \frac{1 - \cos(a)}{\sin(a)} = \frac{\sin(a)}{1 + \cos(a)}

万能公式

sin(a)=2tan(a2)1+tan2(a2)\sin(a) = \frac{2\tan\left(\frac{a}{2}\right)}{1 + \tan^2\left(\frac{a}{2}\right)} cos(a)=1tan2(a2)1+tan2(a2) \cos(a) = \frac{1 - \tan^2\left(\frac{a}{2}\right)}{1 + \tan^2\left(\frac{a}{2}\right)} tan(a)=2tan(a2)1tan2(a2) \tan(a) = \frac{2\tan\left(\frac{a}{2}\right)}{1 - \tan^2\left(\frac{a}{2}\right)}

其他公式

asin(a)+bcos(a)=a2+b2sin(a+c)a\sin(a) + b\cos(a) = \sqrt{a^2 + b^2}\sin(a + c)

其中,tan(c)=ba\tan(c) = \frac{b}{a}

asin(a)bcos(a)=a2+b2cos(ac)a\sin(a) - b\cos(a) = \sqrt{a^2 + b^2}\cos(a - c)

其中,tan(c)=ab\tan(c) = \frac{a}{b}

1+sin(a)=(sin(a2)+cos(a2))21 + \sin(a) = \left(\sin\left(\frac{a}{2}\right) + \cos\left(\frac{a}{2}\right)\right)^2 1sin(a)=(sin(a2)cos(a2))2 1 - \sin(a) = \left(\sin\left(\frac{a}{2}\right) - \cos\left(\frac{a}{2}\right)\right)^2

其他非重点三角函数

csc(a)=1sin(a)\csc(a) = \frac{1}{\sin(a)} sec(a)=1cos(a)\sec(a) = \frac{1}{\cos(a)}

双曲函数

sinh(a)=eaea2 \sinh(a) = \frac{e^a - e^{-a}}{2} cosh(a)=ea+ea2\cosh(a) = \frac{e^a + e^{-a}}{2} tanh(a)=sinh(a)cosh(a)\tanh(a) = \frac{\sinh(a)}{\cosh(a)}